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Abstract 
This article is devoted to the analysis of the most common optimization methods used in practical engineering 

problems of finding the extremum of multidimensional functions and forming on the basis of the identified properties 

of recommendations for choosing the best on different data sets. In the process of analysis, various implementations 

of gradient descent methods, impulse methods, adaptive methods and quasi-Newtonian methods were considered, the 

advantages and problems of each of the methods in their use were generalized. A computer program has been 

developed that implements all the considered methods. A computational experiment on three functions showed that 

the most effective methods were zero-order - Rosenbrock and zero-order - Powell. 
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Introduction 
 

In the process of designing intelligent control 

systems, the task often arises to determine the best 

values of parameters or structure of objects (Masek et 

al. 2017). This task is called optimization (Rogovskii et 

al. 2021j). Today, optimization problems and decision-

making problems are modelled and solved in various 

fields of technology (Dubbini et al. 2017). Skills of 

mathematical substantiation of decision-making include 

skills of mathematical modelling of optimization 

problems (Palamarchuk et al. 2021), selection of 

adequate mathematical software (method, algorithm, 

software system) with the necessary justification, 

analysis of results and their interpretation in terms of 

subject area (Rogovskii et al. 2021g). 

To estimate the approximation of the local 

extremum obtained using the methods of classical and 

stochastic gradient descent, pulse, adaptive and quasi-

Newtonian, narrowing the neighbourhood and the decay 

vector (Viba & Lavendelis, 2006). Determine the 

dependence of the dimension of the problem and time 

costs in finding the global extremum of the goal 

function (Rogovskii et al. 2021e). 

Methods for minimizing the function under 

nonlinear constraints can be divided into two classes 

(Rogovskii et al. 2021a). The first class includes those in 

which the search for a conditional minimum is reduced to 

an unconditional minimization of the function (Rogovskii 

et al. 2021h), resulting in the addition of a penalty for 

inconsistency of restrictions on the objective function 

(Kuzmich et al. 2021). In the methods of the second class 

the constraints are taken into account directly (Rogovskii 

et al. 2021b), and the search is on the admissible points 

with monotonically decreasing values of the objective 

function (Novotny, 2016). The first class includes 

methods of barrier and penalty functions (Zagurskiy et 

al. 2018). The second class includes methods of direct 

and random search to solve problems with limitations 

(Rogovskii et al. 2021d). 

 

 

Formulation of problem 
 

In the agro-industrial complex there are a large 

number of problems that can be solved using 

combinatorial optimization methods: the task of forming 

complexes of agricultural machinery, construction of 

crop rotations, the task of determining the profitability of 

agricultural enterprises, etc. (Pinzi et al. 2016). This is 
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due to the discrete nature of the sets on which the 

optimization is performed (Rogovskii et al. 2021f). 

For example, - discrete sets of crops, fields, 

permitted and unacceptable crop rotations, sets of 

forestry machinery and technological operations to 

perform agricultural work, and so on (Sergejeva et al. 

2018). The main purpose of the technological process is 

to find a combination of required parameters 

(Rogovskii et al. 2021с), which provides the extreme of 

one of the quality criteria – the criterion of increasing 

the biological potential of plants (Yata et al. 2018), 

reducing energy consumption or reducing the impact on 

the ecosystem (Rogovskii, 2020). Choosing a fast and 

reliable algorithm for finding such an extreme is 

relevant (Drga et al. 2016). 

 

 

Purpose of research 

 
The aim of the study was to analyse 

multidimensional methods to optimize the search and 

find the optimal rate of convergence (number of 

iterations), the accuracy of finding the minimum 

function and the speed of the algorithm. It was planned 

to conduct a computational experiment for three 

functions with the help of a developed computer 

program. 

The purpose of this computational experiment, on 

the one hand, is important self-importance to obtain 

conditions for the application of methods to minimize 

functions to solve practical engineering problems, and 

on the other hand it will search for a global extremum 

for the real (largest) dimension of the problem. 

 

 

Research results and discussion 
 

The task of optimization in general is reduced to 

the task of finding the extremum (minimum or 

maximum) of the objective function with given 

constraints. Its mathematical formulation is as follows: 

it is necessary to determine the value of the vector of 

variables 𝑥 = (𝑥1, 𝑥2 …𝑥𝑛), which satisfy the 

constraints of the form: 

𝑓𝑖(𝑥1, 𝑥2 …𝑥𝑛) ≤ 𝑏𝑖,  (1) 

for all in which the maximum or minimum of the 

objective function is achieved:𝑖 = 1…𝑘 
𝑓𝑖(𝑥1, 𝑥2 …𝑥𝑛) → (𝑚𝑖𝑛). 

An admissible solution of the problem will be a 

solution that satisfies its constraints (1). The set of valid 

solutions to the problem is called the area of acceptable 

solutions (AAS). The final solution of the problem is a 

pair (𝑥𝑜𝑝𝑡, 𝑓𝑜𝑝𝑡(𝑥𝑜𝑝𝑡)), which consists of the optimal 

solution and the optimal value of the objective function 

(Nazarenko et al. 2021). 

Methods of mathematical programming give a great 

variety of algorithms for solving this problem. In 

general, search algorithms implement methods of 

descent to the extremum, in which the value of the 

objective function is consistently improved until the 

extremum is reached (Titova, 2021). Depending on the 

possibility of finding the algorithm of local or global 

extremum, they are divided into algorithms of local and 

global search. 

Algorithms in which the objective function takes the 

maximum or minimum value are intended for search of a 

local extremum or one of local extremums on set of 

admissible decisions. In their construction can be used as 

a deterministic descent into the region of extremum, and 

random search. Among the deterministic methods there 

are zero-order and gradient methods (1st and 2nd order). 

The first calculates the value of the function being 

optimized. The latter use private derivatives of the 

appropriate order. To find the extremum in cases where 

the type of optimized function is not fully known, or its 

structure is too complex, methods of stochastic 

programming or neural networks are used. The efficiency 

of the optimum search procedure - the ability to find a 

solution and convergence to a solution by speed depend 

on the type of function and the method used for it. 

Consider the strategy of each method in more detail, 

examining the minimization of the objective function for 

certainty (Luo & Guo, 2013). 

Direct methods (zero order). Of the direct methods, 

the most well-known methods are: coordinate descent - 

alternate optimization of parameters along the axes by 

one of the known one-dimensional methods; spiral 

coordinate descent; rotating coordinates (Rosenbrock 

method); simplex search; Hook-Jeeves with a search for 

a sample; Rosenbrock; Powell, etc. (Astashev & 

Krupenin, 2017). 

The method of coordinate descent is that as the 

directions of the descent trajectory from the previous 

search point 𝑥𝑘−1 to the next 𝑥𝑘 are taken in turn the 

directions of the coordinate axes 𝑥𝑖  (𝑖 = 1…𝑛). After 

descending one step on the coordinate 𝑥1 there is a 

transition to the descent one step on the coordinate 𝑥2 
and so on, until you find the next search point 𝑥𝑘 with 

coordinates 𝑥1
𝑘, 𝑥2

𝑘…𝑥𝑛
𝑘. The movement along the descent 

trajectory continues until the vicinity of the minimum 

point 𝑥𝑜𝑝𝑡 of the objective function, which is determined 

by the accuracy of calculations, is reached. To find the 

coordinates of the point 𝑥𝑘 at each step of the iteration, 

you can use any of the methods of one-dimensional 

minimization: the method of golden section, the method 

of dividing the segment in half, the method of 

interpolation-extrapolation, and so on. 

The method of spiral coordinate descent differs from 

that discussed above only in that the step h changes each 

time you go from finding the minimum for one variable 

to finding the minimum for another variable. In three-

dimensional space, it resembles a descent to a depression 

in a spiral. Usually this method gives some reduction in 

search time, although this method is less effective in the 

presence of surfaces with "ravines". Attempting to move 

in any direction can cause "deterioration" of the target 

function. At the same time, advancing along the "ravine" 

can give "improvement" of the target function (Rogovskii 

et al. 2019). 

Rosen Brock method aimed at eliminating one of the 

disadvantages of the method of coordinate descent - high 

sensitivity to the choice of coordinate system. In the 

process of searching by the Rosen Brock method, the 

coordinate axes are rotated so that one of the axes is 
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directed along the direction of the "ravine". Consider 

the algorithm of the method in the case of one-

dimensional minimization. At each iteration, the 

procedure performs an iterative search along n linearly 

independent and orthogonal directions. When a new 

point is obtained at the end of the iteration, a new set of 

orthogonal vectors is constructed (Fig. 1). 

 

 
Figure 1. The scheme construction a new 

coordinate system by the method of Rosen Brock. 

 

Construction of search directions. Let 𝑑1 …𝑑𝑛 be 

linearly independent vectors, normally equal to one. 

Assume that these vectors are mutually orthogonal, i.e. 

𝑑𝑖 ∙ 𝑑𝑗 = 0 for 𝑖 ≠ 𝑗. Starting from the current point 𝑥𝑘, 

the objective function is successively minimized along 

each of the directions, resulting in a point 𝑥𝑘+1. A new 

set of directions 𝑞1 …𝑞𝑛 is built using the Gram-

Schmidt procedure: 

𝑎𝑗 = {
𝑑𝑗 , 𝐼𝐹 𝜆𝑖 = 0

∑ 𝑑𝑖 ∙ 𝜆𝑖 , 𝐼𝐹 𝜆𝑖 ≠ 0𝑛
𝑖=𝑗

,

𝑏𝑗 = {
𝑎𝑗 , 𝐼𝐹 𝑗 = 0

𝑎𝑗 − ∑ (𝑎𝑖 ∙ 𝑞𝑖) ∙ 𝑞𝑖 , 𝐼𝐹 𝑗 ≥ 2
𝑗−1
𝑖=1

𝑞𝑖 =
𝑏𝑗

|𝑏𝑗|
. (2) 

The new directions, constructed as described, are 

linearly independent and orthogonal. And although 

Rosen Brock’s method eliminates the problems 

associated with obtaining a solution of a given 

accuracy, but this approach relatively increases the 

search time, which is a relative disadvantage of this 

method. 

The Nelder-Mead method (simplex search) uses a 

geometric configuration called simplex. A simplex is a 

convex polyhedron with the number of vertices equal to 

𝑛 + 1, where 𝑛 is the dimension of space. Its important 

feature is the ability to build a new simplex on any face 

of the source, by moving the selected vertex to some 

distance along the line connecting this vertex with the 

center of gravity of other vertices of the simplex. 

The algorithm begins with the construction of a 

regular simplex in the space of independent variables of 

the problem and estimating the value of the objective 

function at its vertices. Then the point 𝑥𝑖 with the 

largest value of the function is reflected through the 

center of gravity of other points: 

𝑥𝑐 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖≠𝑗,𝑖=0 .  (3) 

The new point is used as the vertex of the new 

simplex. Iterations continue until either the minimum 

point is reached or cyclic motion of two or more 

simplexes begins. 

Among the methods of deformation of the original 

simplex (which occurs after the rejection of the worst 

vertex and subsequent search for a new suitable vertex) 

are: vertex reflection (vertex is simply reflected on one 

side of the simplex), reduction (simplex retains its shape 

but decreases). However, this method, despite its 

simplicity, has certain disadvantages: there are 

difficulties associated with scaling the task (in real 

problems, different variables are often not comparable in 

value); the algorithm works slowly (the information of 

previous iterations is not used); there is no easy way to 

resize a simplex without recalculating all the values of 

the objective function. 

The Hooke-Jeeves method is a combination of two 

types of search: the search study and the sample search. 

The first is focused on identifying the nature of the local 

behavior of the objective function and determining the 

directions along the "ravines". The size of the step is set, 

which can be different for different coordinate directions 

and change in the search process. 

If the value of the target function at the test point 

does not exceed the value at the original, the search step 

is considered successful. Otherwise, you need to go back 

to the previous point and take a step in the opposite 

direction. After searching all N coordinates, the search 

ends. The resulting point is called the base. 

The sample search is to implement a single step from 

the obtained base point along the line connecting it to the 

previous base point. And the new point is built on the 

formula: 

𝑥𝑏
𝑘+1 = 𝑥𝑘 + 𝜆 ∙ (𝑥𝑘 − 𝑥𝑘−1),  (4) 

де 𝑥𝑘 – поточна базова точка; 𝑥𝑘−1 – попередня 

базова точка; 𝑥𝑏
𝑘+1 – точка, побудована при русі за 

зразком; λ – параметр алгоритму. 

If the movement of the sample does not lead to a 

decrease in the objective function, the point 𝑥𝑏
𝑘+1 is fixed 

as a temporary base point and again the search is 

performed from this point. If the result is a point with the 

value of the function less than 𝑥𝑘, it is considered as a 

new base point 𝑥𝑘+1. If the researched search is 

unsuccessful, then there is a return to 𝑥𝑘 and the search is 

performed in the opposite direction. If it also does not 

lead to success, the magnitude of the step is reduced and 

resumes the search. The search ends when the step size 

becomes small enough. The advantages of this method 

are a simple search strategy and a small amount of 

memory required. However, the algorithm is based on 

cyclic motion in coordinates, and this can lead to the 

degeneration of the algorithm into an infinite sequence. 

To prevent this, an iteration limiter is set, after which the 

algorithm stops. 

These are not all zero-order methods, but we have 

considered the main ones. 

Gradient methods. A group of methods whose 

iterative processes for solving unconditional optimization 

problems coincide with the antigradient of a function at 

each step are called gradient methods, or descent 

methods. They are also called first-order methods, or 

descent methods. These methods use both the values of 

the function and the values of the first-order partial 

derivatives, so they can be used to minimize the 

functions that are differentiated. First-order methods 

converge faster than direct search methods, as they 
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consider the derivatives that characterize the direction 

of the most rapid decline of the function. Consider 

some of them. 

The fastest descent algorithm implements an 

iterative procedure of moving to a minimum from an 

arbitrarily selected starting point in the direction of the 

strongest reduction of the function, determined in the 

vicinity of the current value of the argument of the 

function being minimized. This direction is opposite to 

the direction given by the gradient vector 𝑔𝑟𝑎𝑑 𝑓(𝑥) =
∇𝑓(𝑥)  of the minimized function 𝑓(𝑥). The general 

formula for finding the value of the argument 𝑥𝑘+1 by 

the value of 𝑥𝑘  found in the k-th step of the fastest 

descent algorithm: 

𝑥𝑘+1 = 𝑥𝑘 + 𝜆𝑘 ∙ 𝑠𝑘, 

where 𝑠𝑘 is a vector of unit length in the direction 

opposite to the direction of the gradient ∇𝑓(𝑥𝑘), 

defined at the point 𝑥𝑘;  𝜆𝑘 is the step of the gradient 

procedure. 

𝑠𝑘 =
−∇𝑓(𝑥𝑘)

|∇𝑓(𝑥𝑘)|
,   (5) 

where |∇𝑓(𝑥𝑘)| - norm of the gradient vector. 

The fastest descent algorithms differ in the method 

of determining the step 𝜆𝑘. If the step 𝜆𝑘 does not 

depend on k (is constant), then in the vicinity of the 

extremum there are inextinguishable oscillations, the 

amplitude of which depends on the value of λ and the 

shape of the function, which is minimized. Using a 

constant step allows you to build the simplest version of 

the algorithm; at large values of λ provides rapid 

movement to the extremum, but leads to noticeable 

changes on the outskirts of the extremum; at small 

values of λ leads to a low rate of convergence to the 

extreme; information about the acceptable step size λ is 

obtained during the debugging of the algorithm. If far 

from the extremum the function 𝑓(𝑥) has a small 

gradient, the rate of convergence may be unacceptably 

slow. This problem is solved by modifying the 

algorithm. 

The method of combined gradients of Fletcher and 

Reeves, the direction of descent in which deviates from 

the direction of the antigradient by adding to it the 

vector of the direction used in the previous step, 

multiplied by some positive number. The search 

directions on each iteration are determined by the 

formula: 

𝑠𝑘 = −∇𝑓(𝑥𝑘) + ∑ 𝛼𝑖 ∙ 𝑠𝑖𝑘−1
𝑖=0 . (6) 

Parameter values are selected so that the direction 

is associated with all previously constructed search 

directions. This is possible when the following 

condition is met: 

𝛼𝑘−1 =
(𝛻𝑓(𝑋𝑘))

2

(𝛻𝑓(𝑋𝑘−1))
2.   (7) 

Practical studies [13] have shown that this method 

converges faster than the method of the fastest descent, 

and its effectiveness increases in the final stages of 

finding the minimum function. In addition, it should be 

noted that this method can be used to minimize 

functions with discontinuous derivatives. The search 

"does not hang on the fracture» but goes along the line 

connecting the breakpoints of the level lines, which 

usually passes through the minimum point. 

Gradient methods are quite effective, but at the initial 

stage of minimization. In the next stages, when the 

search points are near the minimum point, it is necessary 

to use methods that have a higher rate of convergence. 

These methods are second-order methods, which include 

Newton's method and related quasi-Newtonian methods. 

Newton's method is based on the quadratic 

approximation of a function that is minimized about the 

point 𝑥𝑘. The minimum of a quadratic function is easy to 

find by equating its gradient to zero. You can 

immediately calculate the position of the extremum and 

select it as the next approximation to the minimum point. 

Calculating the point of the new approximation by the 

formula: 

𝑥𝑘+1 = 𝑥𝑘 + ∆𝑥𝑘, and decomposing 𝑓(𝑥𝑘+1) into a 

Taylor series, we obtain a quadratic approximation. 

𝑓𝑠𝑞(𝑥
𝑘+1) = 𝑓(𝑥𝑘) + 

+(∇𝑓(𝑥𝑘))
𝑇
𝑥𝑘 + 

+
1

2!
(𝑥𝑘)𝑇∇2𝑓(𝑥𝑘)𝑥𝑘. (8) 

Under the condition of a minimum, look for the 

length of the step 𝑥𝑘: 

𝑥𝑘 = −⟦∇2𝑓(𝑥𝑘)⟧−1 ∙ ∇𝑓(𝑥𝑘). (9) 
Advantages of Newton's method: 

- if the minimized function is quadratic, the method 

will allow to find at least one step; 

- if the function belongs to the class of surfaces of 

rotation (i.e. has symmetry), the method also provides 

convergence in one step; 

- if the function is asymmetric, then the method does 

not provide convergence for a finite number of steps. But 

for many functions, a much higher rate of convergence is 

achieved than with other modifications of the fastest 

descent method. 

The disadvantages of Newton's method are related to 

the need for calculations and inverse matrices of the 

second derivatives. This not only wastes machine time, 

but as significant computational errors can also occur if 

the matrix ∇2f(xk)is poorly determined. 

The Davidon-Fletcher-Powell method, also called 

the variable metric method, falls into the general class of 

quasi-Newtonian procedures in which the search 

directions on the k-th iteration are given as: 

 sk = −hk∇f(xk). The direction of the gradient deviates 

due to multiplication by ℎ𝑘, which is a positively defined 

symmetric matrix of order 𝑛 × 𝑛, approximating the 

inverse Hesse matrix. At each step, the matrix is updated, 

ie takes the form: ℎ𝑘+1 = ℎ𝑘 + 𝑎𝑘 + 𝑏𝑘. 

𝑎𝑘 =
∆𝑥𝑘∙(∆𝑥𝑘)

𝑇

(∆𝑘)𝑇∙∆𝑔𝑘 ,

𝑏𝑘 = −
ℎ𝑘∙(∆𝑘)

𝑇
∙∆𝑔𝑘∙ℎ𝑘

∆𝑥𝑘∙ℎ𝑘∙(∆𝑥𝑘)𝑇
,

∆𝑥𝑘 = 𝑥𝑘 + 𝑥𝑘+1,

∆𝑔𝑘 = ∇𝑓(𝑥𝑘+1) − ∇𝑓(𝑥𝑘)
. (10) 

The Davidson-Fletcher-Powell algorithm can 

sometimes lead to a situation where the matrix becomes 

poorly conditioned, or the condition of positive certainty 

is violated. The reason for this is the poor choice of the 

initial approximation, as well as the presence of rounding 

errors. To overcome these difficulties, it is necessary to 

increase the accuracy of calculations and periodically 

update the iterative process. 

The Davidon-Fletcher-Powell method is widely used 
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to solve a variety of problems and is high. 

Thus, although there is no one-size-fits-all method 

that allows you to successfully solve all problems, some 

methods are better suited to solve certain types of 

problems. Careful selection of the appropriate algorithm 

often saves both machine time and effort spent by the 

engineer to solve the problem. The section provides 

recommendations on which algorithms to prefer, for 

which direct search methods, gradient methods and 

second-order methods are considered. 

When creating and building decision-making 

systems there is a need to solve a variety of 

optimization problems. The considered methods of 

multidimensional optimization as methods of solving 

the general problem of finding the local extremum, and 

the comparisons of their efficiency did not give an 

unambiguous answer to the question of when and which 

method should be used. The result of the analysis of the 

applicability of the considered research algorithms led to 

a deeper numerical experiment aimed at identifying the 

fastest algorithm with maximum plausibility. 

Numerical experiments (practical implementation). 

For practical use, a program in the Delphi programming 

language was developed (Fig. 2). 

The developed interface of the program allows you 

to quickly enter the target function and search for a 

solution in one of 15 methods. The result of such a search 

contains the time spent on the calculation and the 

numerical values of the intermediate values at each step 

(iteration) of the calculation (Table 1). 

 

 
Figure 2. View of the main window of the minGraph program (graphic minimizer). 

 
Table 1. The result of generating intermediate values of the calculation program minGraph. 

𝒁(𝒙) = 𝟖 ∙ 𝒙𝟐 − 𝟒 ∙ 𝒙 ∙ 𝒚 + 𝟓 ∙ 𝒚𝟐 + 𝟖 ∙ √𝟓 ∙ (𝒙 + 𝟐 ∙ 𝒚) + 𝟔𝟒 

Method: Coordinate descent (golden ratio) - Gauss - Seidel method 

Calculation time: 12.2292 ms 

Іtер. (x, y) Z = f(x, y) scalar argument* gradient 

1 (-15.000; 10.000) 3053.443 0.000 (-15.000; 10.000) 

2 (-4.868; -5.525) 13.869 1.000 (-4.868; -5.525) 

3 (-2.499; -4.578) -35.501 1.000 (-2.499; -4.578) 

4 (-2.263; -4.482) -35.995 1.000 (-2.263; -4.482) 

5 (-2.239; -4.473) -36.000 1.000 (-2.239; -4.473) 

6 (-2.237; -4.473) -36.000 1.000 (-2.237; -4.473) 

7 (-2.236; -4.472) -36.000 1.000 (-2.236; -4.472) 

8 (-2.236; -4.472) -36.000 1.000 (-2.236; -4.472) 

Note * is a scalar argument k of a scalar function of the form: Ψ(𝑘) = 𝑓 (𝑥𝑘⃗⃗ ⃗⃗  + 𝑘 ∙ 𝑦𝑘⃗⃗ ⃗⃗  ). 
 

The method of numerical experiment was as 

follows: for three target functions under certain initial 

conditions (Table 2) the speed and accuracy of ascent 

were studied using 15 minimum search methods: 1 – 

coordinate descent (golden ratio) – Gauss-Seidel method; 

2 – random search; 3 – gradient descent with step 

crushing; 4 – the fastest descent (Cauchy method); 5 – 

related areas; 6 – Fletcher-Reeves; 7 – DFP (Davidon-
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Fletcher-Powell); 8 – cyclic coordinate descent; 9 – 

zero order – Hook-Jeeves; 10 – zero order – 

Rosenbrock; 11 – zero order – Powell; 12 – irregular 

simplex – Nelder-Mead; 13 – Newton's method; 14 – 

conditional gradient; 15 – projections of the 

antigradient. The following parameters were recorded: 

the number of iterations, the time spent searching for a 

solution, the found value of the function and the 

subsequent comparison with the exact value by finding 

the absolute error (Table 3). 

The finding the minimum of functions by iterative 

methods, one of the decisive factors should be considered 

the stability of the results. This means that small 

deviations from the initial values of the desired functions 

should not lead to a significant change in the final result. 

For clarity, the type of surfaces and the computational 

process of minimization for two variables is shown in 

Fig. 3. 

 

Table 2. The output of the simulation search for the best algorithm for the three functions. 

 

Function 1 -:𝒇𝟏 

𝒇(𝒙, 𝒚) = 𝟏𝟎𝟎 ∙ (𝒚𝟐 − 𝒙𝟐)𝟐 + (𝟏 − 𝒙)𝟐 

Initial data: 

Starting point -(𝑥0 = −19.00; 𝑦0 = 0.00) 

Accuracy -𝑒 = 0.001 

Number of points - 30 

The boundaries of the graph - x, y = 20 

 

Function 2 -:𝒇𝟐 

𝑓(𝑥, 𝑦) = 8𝑥2 − 4𝑥𝑦 + 5𝑦2 + 8√5 ∙ (𝑥 + 2𝑦) + 64 

Initial data: 

Starting point -(𝑥0 = −15.00; 𝑦0 = 10.00) 

Accuracy -𝑒 = 0.001 

Number of points - 30 

The boundaries of the graph - x, y = 20 

 

Function 2 -:𝒇𝟑 

𝑓(𝑥, 𝑦) = 100 ∙ (𝑦 − 𝑥2)2 + (𝑦 − 1)2 

Initial data: 

Starting point -(𝑥0 = −19.00; 𝑦0 = 0.00) 

Accuracy -𝑒 = 0.001 

Number of points - 30 

The boundaries of the graph - x, y = 20 
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In this computational experiment, deliberately 

complex operating conditions were used. To do this, the 

starting points were chosen as far as possible from the 

probable minimum. 

 

Table 3. Estimated minimum values of functions for 

different algorithms. 

Met

hod 

Found 

value 
Iteration Time, ms Δ 

function –  𝒇𝟏  (𝒎𝒊𝒏 =  𝟎) 

1.  323,997 3 6,4131 -323,997 

2.  0,059 74 116,97 -0,059 

3.  3592310 2 4,2522 -3592310 

4.  0,771 5 6,4882 -0,771 

5.  0,771 4 5,5555 -0,771 

6.  0,771 8 21,8611 -0,771 

7.  0,557 98 159,5394 -0,557 

8.  99,994 3 202,1436 -99,994 

9.  110,249 4 7,2663 -110,249 

10.  0 5 6,6056 0 

11.  0 5 6,6534 0 

12.  0,001 2 4,4209 -0,001 

13.  0,771 16 29,3393 -0,771 

14.  0,049 143 223,6698 -0,049 

15.  4 308 480,2124 -4 

function – 𝒇𝟐 ( 𝒎𝒊𝒏 =  −𝟑𝟔) 

1.  -36 8 15,32 0 

2.  -35,745 79 142,667 -0,255 

3.  -36 29 58,9249 0 

4.  -36 9 22,9714 0 

5.  -36 3 8,9138 0 

6.  -36 3 5,9635 0 

7.  -36 3 4,7089 0 

8.  -36 8 214,511 0 

9.  -36 12 20,3669 0 

10.  -36 7 24,5134 0 

11.  -36 3 11,0239 0 

12.  -36 2 4,3565 0 

13.  -36 3 4,8218 0 

14.  -20,22 3 4,9149 -15,78 

15.  -34,997 7 25,2023 -1,003 

function – 𝒇𝟑 (𝒎𝒊𝒏 =  𝟎) 

1.  0,15 99 180,254 -0,15 

2.  4,977 74 134,857 -4,977 

3.  3586954 2 14,4432 -3586954 

4.  0,361 98 160,222 -0,361 

5.  0,478 49 104,287 -0,478 

6.  43,643 99 162,982 -43,643 

7.  0 92 156,589 0 

8.  0 987 7604 0 

9.  0,044 480 1867,2 -0,044 

10.  0 135 248,126 0 

11.  0 6 30,9801 0 

12.  0 2 8,6935 0 

13.  0 22 43,0731 0 

14.  0 17 39,3458 0 

15.  0 371 570,204 0 

 

After finding the optimum of the functions (Fig. 3), 

the results of the calculation were compared by 

methods for three functions on the rate of ascent, the 

accuracy of ascent. 

A computational experiment showed that the first 

function turned out to be quite complex for almost all 

algorithms (minimum at: 𝑥 = 1; 𝑦 = 1). Methods 7, 8 

and 14 and 15 showed the worst rate of ascent. These 

methods are also unsatisfactory. The optimal solution 

was not found, and the values of approaching the 

minimum ranged from 0.049… 99.994. Methods 10, 11 

and 11 proved to be the most effective. The accuracy of 

these methods was 100%. It is inadmissible to use to find 

the minimum of this function 3 method (gradient descent 

with crushing step). Of course, if we take into account 

the value of the function at the starting point (13032500), 

the value found is 0.049…0.771 (this is almost the 

minimum, with some assumptions can be considered a 

sufficient solution by methods 2,4,5,6,7, 13 and 14). 

The second function (minimum = -36) turned out to 

be easier to find a solution. This is due to the more 

pronounced peak of the minimum (table 2). Only three 

methods 2, 14 and 15 failed the task. All the others 

showed high accuracy. Regarding the rate of ascent, 2 

and 3 methods performed work for 79 and 29 iterations, 

respectively. The running time of the algorithm depended 

not so much on the number of iterations as on the 

complexity of the algorithm. 

The dependences of the rate of convergence of the 

three functions for 15 algorithms (Fig. 4) showed the best 

values for 11, 12 and partially 3 methods. However, 

given the current speed of computers, the number of 

iterations close to 100 is not so important, although the 

time difference (Fig. 5) is more striking (8 and 9 methods 

- 2000, 8000 ms). More decisive for the methods is the 

accuracy of finding the minimum. 

The third experimental function in finding the 

minimum showed the excellent work of methods 7-15. 

And this is due to the complexity of Rosen Brock’s 

function. This function is a classic optimization problem, 

also known as the banana function. It has a large slowly 

descending plateau. Finding a plateau is a trivial task, but 

convergence to the global optimum is difficult. This 

function is used to evaluate the operation of optimization 

algorithms, and therefore was chosen by us for research. 

All other methods stumbled on this function and showed 

questionable results, especially method 3. Of particular 

interest in the work of 8 and 9 methods (cyclic coordinate 

descent and zero order - Hook-Jeeves). There is a rather 

poor ascent and a lot of time for the algorithm. However, 

the result was excellent for method 8 and sufficient for 

method 9. 

Computational experiments to minimize three 

functions (Table 2) for 15 optimization methods showed 

that two methods can be recommended for all studied 

functions: 10 – zero order – Rosen Brock and 11 – zero 

order – Powell (Fig. 3). 

This is since these algorithms immediately move to 

the local minimum and have the widest range of gravity, 

so it is more likely that at least one of the iterations falls 

into the specified area and has the maximum impact on 

further behavior of the search algorithm. 
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Figure 3. A set of minimum search images for a function 𝒇𝟏 by different methods. 

 

 
Figure 4. Histograms of convergence of experimental functions for 15 methods. 
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Figure 5. Histograms of convergence of experimental functions for 15 methods. 

 

Only these methods showed the best convergence 

and calculation accuracy for all functions. Other 

methods have partially shown excellent results for some 

functions, while for other functions not at all. 

It should be noted that it is advisable to use these 

methods on more complex functions, which in addition 

to the global minimum contain several local minima, 

which may be of interest in solving applied engineering 

problems. The use of the developed tool will speed up 

the analysis of engineering functions, and in general 

will increase the stability of the results. 

 

 

Conclusions 
 

In the course of this work the main optimization 

methods used in modern engineering problems and 

methods of learning neural networks were considered. 

In the course of the research the analysis of properties 

and features of the considered methods was carried out, 

and also conditions and the substantiation of their most 

optimum application in various practical tasks from the 

point of view of their convergence and accuracy were 

formulated. 

The analysis data are accompanied by practical 

results, which confirm the formulated recommendations 

for the use of the considered methods of classical and 

stochastic gradient descent, pulse, adaptive, and quasi-

Newtonian optimization algorithms in engineering 

problems. 

Areas of further research. The considered 

multidimensional optimization methods can be used in 

the future for training neural networks. 
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