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Abstract

This article is devoted to the analysis of the most common optimization methods used in practical engineering
problems of finding the extremum of multidimensional functions and forming on the basis of the identified properties
of recommendations for choosing the best on different data sets. In the process of analysis, various implementations
of gradient descent methods, impulse methods, adaptive methods and quasi-Newtonian methods were considered, the
advantages and problems of each of the methods in their use were generalized. A computer program has been
developed that implements all the considered methods. A computational experiment on three functions showed that
the most effective methods were zero-order - Rosenbrock and zero-order - Powell.
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Introduction

In the process of designing intelligent control
systems, the task often arises to determine the best
values of parameters or structure of objects (Masek et
al. 2017). This task is called optimization (Rogovskii et
al. 2021j). Today, optimization problems and decision-
making problems are modelled and solved in various
fields of technology (Dubbini et al. 2017). Skills of
mathematical substantiation of decision-making include
skills of mathematical modelling of optimization
problems (Palamarchuk et al. 2021), selection of
adequate mathematical software (method, algorithm,
software system) with the necessary justification,
analysis of results and their interpretation in terms of
subject area (Rogovskii et al. 20219).

To estimate the approximation of the local
extremum obtained using the methods of classical and
stochastic gradient descent, pulse, adaptive and quasi-
Newtonian, narrowing the neighbourhood and the decay
vector (Viba & Lavendelis, 2006). Determine the
dependence of the dimension of the problem and time
costs in finding the global extremum of the goal
function (Rogovskii et al. 2021e).

Methods for minimizing the function under

nonlinear constraints can be divided into two classes
(Rogovskii et al. 2021a). The first class includes those in
which the search for a conditional minimum is reduced to
an unconditional minimization of the function (Rogovskii
et al. 2021h), resulting in the addition of a penalty for
inconsistency of restrictions on the objective function
(Kuzmich et al. 2021). In the methods of the second class
the constraints are taken into account directly (Rogovskii
et al. 2021b), and the search is on the admissible points
with monotonically decreasing values of the objective
function (Novotny, 2016). The first class includes
methods of barrier and penalty functions (Zagurskiy et
al. 2018). The second class includes methods of direct
and random search to solve problems with limitations
(Rogovskii et al. 2021d).

Formulation of problem

In the agro-industrial complex there are a large
number of problems that can be solved using
combinatorial optimization methods: the task of forming
complexes of agricultural machinery, construction of
crop rotations, the task of determining the profitability of
agricultural enterprises, etc. (Pinzi et al. 2016). This is
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due to the discrete nature of the sets on which the
optimization is performed (Rogovskii et al. 2021f).

For example, - discrete sets of crops, fields,
permitted and unacceptable crop rotations, sets of
forestry machinery and technological operations to
perform agricultural work, and so on (Sergejeva et al.
2018). The main purpose of the technological process is
to find a combination of required parameters
(Rogovskii et al. 2021¢), which provides the extreme of
one of the quality criteria — the criterion of increasing
the biological potential of plants (Yata et al. 2018),
reducing energy consumption or reducing the impact on
the ecosystem (Rogovskii, 2020). Choosing a fast and
reliable algorithm for finding such an extreme is
relevant (Drga et al. 2016).

Purpose of research

The aim of the study was to analyse
multidimensional methods to optimize the search and
find the optimal rate of convergence (number of
iterations), the accuracy of finding the minimum
function and the speed of the algorithm. It was planned
to conduct a computational experiment for three
functions with the help of a developed computer
program.

The purpose of this computational experiment, on
the one hand, is important self-importance to obtain
conditions for the application of methods to minimize
functions to solve practical engineering problems, and
on the other hand it will search for a global extremum
for the real (largest) dimension of the problem.

Research results and discussion

The task of optimization in general is reduced to
the task of finding the extremum (minimum or
maximum) of the objective function with given
constraints. Its mathematical formulation is as follows:
it is necessary to determine the value of the vector of

variables x = (xq,x; ...x,), Wwhich satisfy the
constraints of the form:
fi(xl'x2 xn) < bi7 (l)

for all in which the maximum or minimum of the
objective function is achieved:i =1 ...k
fi(x1, x5 ... %) = (min).

An admissible solution of the problem will be a
solution that satisfies its constraints (1). The set of valid
solutions to the problem is called the area of acceptable
solutions (AAS). The final solution of the problem is a
pair (x°Pt, fOoPt(x°P!)), which consists of the optimal
solution and the optimal value of the objective function
(Nazarenko et al. 2021).

Methods of mathematical programming give a great
variety of algorithms for solving this problem. In
general, search algorithms implement methods of
descent to the extremum, in which the value of the
objective function is consistently improved until the
extremum is reached (Titova, 2021). Depending on the
possibility of finding the algorithm of local or global

extremum, they are divided into algorithms of local and
global search.

Algorithms in which the objective function takes the
maximum or minimum value are intended for search of a
local extremum or one of local extremums on set of
admissible decisions. In their construction can be used as
a deterministic descent into the region of extremum, and
random search. Among the deterministic methods there
are zero-order and gradient methods (1st and 2nd order).
The first calculates the value of the function being
optimized. The latter use private derivatives of the
appropriate order. To find the extremum in cases where
the type of optimized function is not fully known, or its
structure is too complex, methods of stochastic
programming or neural networks are used. The efficiency
of the optimum search procedure - the ability to find a
solution and convergence to a solution by speed depend
on the type of function and the method used for it.
Consider the strategy of each method in more detail,
examining the minimization of the objective function for
certainty (Luo & Guo, 2013).

Direct methods (zero order). Of the direct methods,
the most well-known methods are: coordinate descent -
alternate optimization of parameters along the axes by
one of the known one-dimensional methods; spiral
coordinate descent; rotating coordinates (Rosenbrock
method); simplex search; Hook-Jeeves with a search for
a sample; Rosenbrock; Powell, etc. (Astashev &
Krupenin, 2017).

The method of coordinate descent is that as the
directions of the descent trajectory from the previous
search point x*~* to the next x* are taken in turn the
directions of the coordinate axes x; (i =1..n). After
descending one step on the coordinate x; there is a
transition to the descent one step on the coordinate x,
and so on, until you find the next search point x* with
coordinates x¥, x¥...x¥. The movement along the descent
trajectory continues until the vicinity of the minimum
point x°Pt of the objective function, which is determined
by the accuracy of calculations, is reached. To find the
coordinates of the point x* at each step of the iteration,
you can use any of the methods of one-dimensional
minimization: the method of golden section, the method
of dividing the segment in half, the method of
interpolation-extrapolation, and so on.

The method of spiral coordinate descent differs from
that discussed above only in that the step h changes each
time you go from finding the minimum for one variable
to finding the minimum for another variable. In three-
dimensional space, it resembles a descent to a depression
in a spiral. Usually this method gives some reduction in
search time, although this method is less effective in the
presence of surfaces with "ravines". Attempting to move
in any direction can cause "deterioration" of the target
function. At the same time, advancing along the "ravine"
can give "improvement" of the target function (Rogovskii
et al. 2019).

Rosen Brock method aimed at eliminating one of the
disadvantages of the method of coordinate descent - high
sensitivity to the choice of coordinate system. In the
process of searching by the Rosen Brock method, the
coordinate axes are rotated so that one of the axes is
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directed along the direction of the "ravine". Consider
the algorithm of the method in the case of one-
dimensional minimization. At each iteration, the
procedure performs an iterative search along n linearly
independent and orthogonal directions. When a new
point is obtained at the end of the iteration, a new set of
orthogonal vectors is constructed (Fig. 1).

Figure 1. The scheme construction a new
coordinate system by the method of Rosen Brock.

Construction of search directions. Let d, ...d,, be
linearly independent vectors, normally equal to one.
Assume that these vectors are mutually orthogonal, i.e.
d; - d; = 0 for i # j. Starting from the current point xk,
the objective function is successively minimized along
each of the directions, resulting in a point x**1, A new
set of directions q; ...q, is built using the Gram-
Schmidt procedure:

dj,IF ;=10
aj_ ?:jdi'li;IFli#:O’ _ bj
a,IFj=0 qi = oI (2)

b {aj - Z{:—il(ai "q)q,IFj =2

The new directions, constructed as described, are
linearly independent and orthogonal. And although
Rosen Brock’s method eliminates the problems
associated with obtaining a solution of a given
accuracy, but this approach relatively increases the
search time, which is a relative disadvantage of this
method.

The Nelder-Mead method (simplex search) uses a
geometric configuration called simplex. A simplex is a
convex polyhedron with the number of vertices equal to
n + 1, where n is the dimension of space. Its important
feature is the ability to build a new simplex on any face
of the source, by moving the selected vertex to some
distance along the line connecting this vertex with the
center of gravity of other vertices of the simplex.

The algorithm begins with the construction of a
regular simplex in the space of independent variables of
the problem and estimating the value of the objective
function at its vertices. Then the point x; with the
largest value of the function is reflected through the
center of gravity of other points:

xe = im0 %1 ®

The new point is used as the vertex of the new
simplex. Iterations continue until either the minimum
point is reached or cyclic motion of two or more
simplexes begins.

Among the methods of deformation of the original
simplex (which occurs after the rejection of the worst

vertex and subsequent search for a new suitable vertex)
are: vertex reflection (vertex is simply reflected on one

side of the simplex), reduction (simplex retains its shape
but decreases). However, this method, despite its
simplicity, has certain disadvantages: there are

difficulties associated with scaling the task (in real
problems, different variables are often not comparable in
value); the algorithm works slowly (the information of
previous iterations is not used); there is no easy way to
resize a simplex without recalculating all the values of
the objective function.

The Hooke-Jeeves method is a combination of two
types of search: the search study and the sample search.
The first is focused on identifying the nature of the local
behavior of the objective function and determining the
directions along the "ravines". The size of the step is set,
which can be different for different coordinate directions
and change in the search process.

If the value of the target function at the test point
does not exceed the value at the original, the search step
is considered successful. Otherwise, you need to go back
to the previous point and take a step in the opposite
direction. After searching all N coordinates, the search
ends. The resulting point is called the base.

The sample search is to implement a single step from
the obtained base point along the line connecting it to the
previous base point. And the new point is built on the
formula:

X = xRk 4+ 1 (k= xkD), (4)

ne x* — morouna 6azoBa Touka; x¥~! — nonepenns

6a3oBa Touka; x£*! — Touka, moGyaoBaHa mpu pyci 3a
3pa3koM; A — mapaMeTp alrOpUTMy.

If the movement of the sample does not lead to a
decrease in the objective function, the point xf** is fixed
as a temporary base point and again the search is
performed from this point. If the result is a point with the
value of the function less than x*, it is considered as a
new base point x**'. If the researched search is
unsuccessful, then there is a return to x* and the search is
performed in the opposite direction. If it also does not
lead to success, the magnitude of the step is reduced and
resumes the search. The search ends when the step size
becomes small enough. The advantages of this method
are a simple search strategy and a small amount of
memory required. However, the algorithm is based on
cyclic motion in coordinates, and this can lead to the
degeneration of the algorithm into an infinite sequence.
To prevent this, an iteration limiter is set, after which the
algorithm stops.

These are not all zero-order methods, but we have
considered the main ones.

Gradient methods. A group of methods whose
iterative processes for solving unconditional optimization
problems coincide with the antigradient of a function at
each step are called gradient methods, or descent
methods. They are also called first-order methods, or
descent methods. These methods use both the values of
the function and the values of the first-order partial
derivatives, so they can be used to minimize the
functions that are differentiated. First-order methods
converge faster than direct search methods, as they
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consider the derivatives that characterize the direction
of the most rapid decline of the function. Consider
some of them.

The fastest descent algorithm implements an
iterative procedure of moving to a minimum from an
arbitrarily selected starting point in the direction of the
strongest reduction of the function, determined in the
vicinity of the current value of the argument of the
function being minimized. This direction is opposite to
the direction given by the gradient vector grad f(x) =
Vf(x) of the minimized function f(x). The general
formula for finding the value of the argument x*** by
the value of x* found in the k-th step of the fastest
descent algorithm:

xk+1 — xk + ﬂ.k 'Sk,

where s* is a vector of unit length in the direction
opposite to the direction of the gradient Vf(x*),
defined at the point x*; A¥ is the step of the gradient
procedure.
Kk _ ~V(x9)

Ol
where |Vf(x*)| - norm of the gradient vector.

The fastest descent algorithms differ in the method
of determining the step A*. If the step A* does not
depend on k (is constant), then in the vicinity of the
extremum there are inextinguishable oscillations, the
amplitude of which depends on the value of A and the
shape of the function, which is minimized. Using a
constant step allows you to build the simplest version of
the algorithm; at large values of A provides rapid
movement to the extremum, but leads to noticeable
changes on the outskirts of the extremum; at small
values of A leads to a low rate of convergence to the
extreme; information about the acceptable step size A is
obtained during the debugging of the algorithm. If far
from the extremum the function f(x) has a small
gradient, the rate of convergence may be unacceptably
slow. This problem is solved by modifying the
algorithm.

The method of combined gradients of Fletcher and
Reeves, the direction of descent in which deviates from
the direction of the antigradient by adding to it the
vector of the direction used in the previous step,
multiplied by some positive number. The search
directions on each iteration are determined by the
formula:

S

©)

sk =—VF(xR) + Xkt at - st (6)

Parameter values are selected so that the direction

is associated with all previously constructed search

directions. This is possible when the following
condition is met:

_ ()’
= o) )

Practical studies [13] have shown that this method
converges faster than the method of the fastest descent,
and its effectiveness increases in the final stages of
finding the minimum function. In addition, it should be
noted that this method can be used to minimize
functions with discontinuous derivatives. The search
"does not hang on the fracture» but goes along the line
connecting the breakpoints of the level lines, which

usually passes through the minimum point.

Gradient methods are quite effective, but at the initial
stage of minimization. In the next stages, when the
search points are near the minimum point, it is necessary
to use methods that have a higher rate of convergence.
These methods are second-order methods, which include
Newton's method and related quasi-Newtonian methods.

Newton's method is based on the quadratic
approximation of a function that is minimized about the
point x¥. The minimum of a quadratic function is easy to
find by equating its gradient to zero. You can
immediately calculate the position of the extremum and
select it as the next approximation to the minimum point.
Calculating the point of the new approximation by the
formula:

x**1 = xk + Ax*, and decomposing f(x**1) into a
Taylor series, we obtain a quadratic approximation.

foq (1) = f(x*) +
+(VF (k) xk +
+— ()T (), ®)

Under the condition of a minimum, look for the
length of the step x*:

X ==Vt V().

Advantages of Newton's method:

- if the minimized function is quadratic, the method
will allow to find at least one step;

- if the function belongs to the class of surfaces of
rotation (i.e. has symmetry), the method also provides
convergence in one step;

- if the function is asymmetric, then the method does
not provide convergence for a finite number of steps. But
for many functions, a much higher rate of convergence is
achieved than with other modifications of the fastest
descent method.

The disadvantages of Newton's method are related to
the need for calculations and inverse matrices of the
second derivatives. This not only wastes machine time,
but as significant computational errors can also occur if
the matrix V2f(x*)is poorly determined.

The Davidon-Fletcher-Powell method, also called
the variable metric method, falls into the general class of
quasi-Newtonian procedures in which the search
directions on the k-th iteration are given as:
sk = —h*Vf(x¥). The direction of the gradient deviates
due to multiplication by h*, which is a positively defined
symmetric matrix of order n x n, approximating the
inverse Hesse matrix. At each step, the matrix is updated,
ie takes the form: h**1 = h* + gk + bk,

o Axk(axk)

(Ak)T.Agk ’

9)

k _ .k k+1
Ax™ = x™ 4+ x*,

e e aghs  agh = rGe) — vy (10
T axknk(axk)T
The Davidson-Fletcher-Powell  algorithm  can

sometimes lead to a situation where the matrix becomes
poorly conditioned, or the condition of positive certainty
is violated. The reason for this is the poor choice of the
initial approximation, as well as the presence of rounding
errors. To overcome these difficulties, it is necessary to
increase the accuracy of calculations and periodically
update the iterative process.

The Davidon-Fletcher-Powell method is widely used
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to solve a variety of problems and is high.

Thus, although there is no one-size-fits-all method
that allows you to successfully solve all problems, some
methods are better suited to solve certain types of
problems. Careful selection of the appropriate algorithm
often saves both machine time and effort spent by the
engineer to solve the problem. The section provides
recommendations on which algorithms to prefer, for
which direct search methods, gradient methods and
second-order methods are considered.

When creating and building decision-making
systems there is a need to solve a variety of
optimization problems. The considered methods of
multidimensional optimization as methods of solving
the general problem of finding the local extremum, and

the comparisons of their efficiency did not give an
unambiguous answer to the question of when and which
method should be used. The result of the analysis of the
applicability of the considered research algorithms led to
a deeper numerical experiment aimed at identifying the
fastest algorithm with maximum plausibility.

Numerical experiments (practical implementation).
For practical use, a program in the Delphi programming
language was developed (Fig. 2).

The developed interface of the program allows you
to quickly enter the target function and search for a
solution in one of 15 methods. The result of such a search
contains the time spent on the calculation and the
numerical values of the intermediate values at each step
(iteration) of the calculation (Table 1).

| 4 Winiuizarop rpadsismwi - [Hasiusnguoro crycry (Metos, Kowi)]
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Figure 2. View of the main window of the minGraph program (graphic minimizer).

Table 1. The result of generating intermediate values of the calculation program minGraph.

Zx =8:x*—4-x'y+5-y*+8- 5- x+2-y +64
Method: Coordinate descent (golden ratio) - Gauss - Seidel method

Calculation time: 12.2292 ms

Itep. (x,y) Z=1(x,y) scalar argument* gradient
1 (-15.000; 10.000) 3053.443 0.000 (-15.000; 10.000)
2 (-4.868; -5.525) 13.869 1.000 (-4.868; -5.525)
3 (-2.499; -4.578) -35.501 1.000 (-2.499; -4.578)
4 (-2.263; -4.482) -35.995 1.000 (-2.263; -4.482)
5 (-2.239; -4.473) -36.000 1.000 (-2.239; -4.473)
6 (-2.237; -4.473) -36.000 1.000 (-2.237; -4.473)
7 (-2.236; -4.472) -36.000 1.000 (-2.236; -4.472)
8 (-2.236; -4.472) -36.000 1.000 (-2.236; -4.472)

Note * is a scalar argument k of a scalar function of the form: W(k) = f (F +k- ;’?)

The method of numerical experiment was as
follows: for three target functions under certain initial
conditions (Table 2) the speed and accuracy of ascent
were studied using 15 minimum search methods: 1 —

coordinate descent (golden ratio) — Gauss-Seidel method;
2 — random search; 3 — gradient descent with step
crushing; 4 — the fastest descent (Cauchy method); 5 —
related areas; 6 — Fletcher-Reeves; 7 — DFP (Davidon-
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Fletcher-Powell); 8 — cyclic coordinate descent; 9 —
zero order — Hook-Jeeves; 10 — zero order -
Rosenbrock; 11 — zero order — Powell; 12 — irregular
simplex — Nelder-Mead; 13 — Newton's method; 14 —
conditional gradient; 15 - projections of the
antigradient. The following parameters were recorded:
the number of iterations, the time spent searching for a
solution, the found value of the function and the
subsequent comparison with the exact value by finding

the absolute error (Table 3).

The finding the minimum of functions by iterative
methods, one of the decisive factors should be considered
the stability of the results. This means that small
deviations from the initial values of the desired functions
should not lead to a significant change in the final result.
For clarity, the type of surfaces and the computational
process of minimization for two variables is shown in
Fig. 3.

Table 2. The output of the simulation search for the best algorithm for the three functions.
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2 9000000
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) 20

20 15 10 5 0

Function 1 -:f4
fx,y) =100 (y* —x*)? + (1 — x)*

Initial data:

Starting point -(x0 = —19.00; y0 = 0.00)
Accuracy -e = 0.001

Number of points - 30

The boundaries of the graph - x, y =20

Function 2 -:f,
f(x,y) = 8x% — 4xy 4+ 5y2 4+ 8V5 - (x + 2y) + 64

Initial data:

Starting point -(x0 = —15.00; y0 = 10.00)
Accuracy -e = 0.001

Number of points - 30

The boundaries of the graph - x, y = 20

Function 2 -:f5
fle,y) =100 (y —x*)? + (y — 1)?

Initial data:

Starting point -(x0 = —19.00; y0 = 0.00)
Accuracy -e = 0.001

Number of points - 30

The boundaries of the graph - x, y = 20
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In this computational
complex operating conditions were used. To do this, the
starting points were chosen as far as possible from the

probable minimum.

experiment,

deliberately

Table 3. Estimated minimum values of functions for
different algorithms.

Met Found Iteration | Time, ms A
hod value
function— f; (min = 0)
1. 323,997 3 6,4131 | -323,997
2. 0,059 74 116,97 -0,059
3. 3592310 2 4,2522 | -3592310
4, 0,771 5 6,4882 -0,771
5. 0,771 4 5,56555 -0,771
6. 0,771 8 21,8611 -0,771
7. 0,557 98 | 159,5394 -0,557
8. 99,994 3| 202,1436 -99,994
9. 110,249 4 7,2663 | -110,249
10. 0 5 6,6056 0
11. 0 5 6,6534 0
12. 0,001 2 4,4209 -0,001
13. 0,771 16 29,3393 -0,771
14, 0,049 143 | 223,6698 -0,049
15. 4 308 | 480,2124 -4
function — f, (min = —36)
1. -36 8 15,32 0
2. -35,745 79 142,667 -0,255
3. -36 29 58,9249 0
4, -36 9 22,9714 0
5. -36 3 8,9138 0
6. -36 3 5,9635 0
7. -36 3 4,7089 0
8. -36 8 214511 0
9. -36 12 20,3669 0
10. -36 7 24,5134 0
11. -36 3 11,0239 0
12. -36 2 4,3565 0
13. -36 3 4,8218 0
14, -20,22 3 4,9149 -15,78
15. -34,997 7 25,2023 -1,003
function — f5 (min = 0)

1. 0,15 99 180,254 -0,15
2. 4977 74 134,857 -4,977
3. 3586954 2 14,4432 | -3586954
4, 0,361 98 160,222 -0,361
5. 0,478 49 104,287 -0,478
6. 43,643 99 162,982 -43,643
7. 0 92 156,589 0
8. 0 987 7604 0
9. 0,044 480 1867,2 -0,044
10. 0 135 248,126 0
11. 0 6 30,9801 0
12. 0 2 8,6935 0
13. 0 22 43,0731 0
14, 0 17 39,3458 0
15. 0 371 570,204 0

After finding the optimum of the functions (Fig. 3),
the results of the calculation were compared by

methods for three functions on the rate of ascent, the
accuracy of ascent.

A computational experiment showed that the first
function turned out to be quite complex for almost all
algorithms (minimum at: x = 1;y = 1). Methods 7, 8
and 14 and 15 showed the worst rate of ascent. These
methods are also unsatisfactory. The optimal solution
was not found, and the values of approaching the
minimum ranged from 0.049... 99.994. Methods 10, 11
and 11 proved to be the most effective. The accuracy of
these methods was 100%. It is inadmissible to use to find
the minimum of this function 3 method (gradient descent
with crushing step). Of course, if we take into account
the value of the function at the starting point (13032500),
the value found is 0.049...0.771 (this is almost the
minimum, with some assumptions can be considered a
sufficient solution by methods 2,4,5,6,7, 13 and 14).

The second function (minimum = -36) turned out to
be easier to find a solution. This is due to the more
pronounced peak of the minimum (table 2). Only three
methods 2, 14 and 15 failed the task. All the others
showed high accuracy. Regarding the rate of ascent, 2
and 3 methods performed work for 79 and 29 iterations,
respectively. The running time of the algorithm depended
not so much on the number of iterations as on the
complexity of the algorithm.

The dependences of the rate of convergence of the
three functions for 15 algorithms (Fig. 4) showed the best
values for 11, 12 and partially 3 methods. However,
given the current speed of computers, the number of
iterations close to 100 is not so important, although the
time difference (Fig. 5) is more striking (8 and 9 methods
- 2000, 8000 ms). More decisive for the methods is the
accuracy of finding the minimum.

The third experimental function in finding the
minimum showed the excellent work of methods 7-15.
And this is due to the complexity of Rosen Brock’s
function. This function is a classic optimization problem,
also known as the banana function. It has a large slowly
descending plateau. Finding a plateau is a trivial task, but
convergence to the global optimum is difficult. This
function is used to evaluate the operation of optimization
algorithms, and therefore was chosen by us for research.
All other methods stumbled on this function and showed
questionable results, especially method 3. Of particular
interest in the work of 8 and 9 methods (cyclic coordinate
descent and zero order - Hook-Jeeves). There is a rather
poor ascent and a lot of time for the algorithm. However,
the result was excellent for method 8 and sufficient for
method 9.

Computational experiments to minimize three
functions (Table 2) for 15 optimization methods showed
that two methods can be recommended for all studied
functions: 10 — zero order — Rosen Brock and 11 — zero
order — Powell (Fig. 3).

This is since these algorithms immediately move to
the local minimum and have the widest range of gravity,
so it is more likely that at least one of the iterations falls
into the specified area and has the maximum impact on
further behavior of the search algorithm.
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Figure 3. A set of minimum search images for a function f by different methods.

1000

100

number of iterations

10

2 3 4 5 6 7 8

9 10 11 12 13 14 15

m  function 1 m function 2 = function3 Method code

Figure 4. Histograms of convergence of experimental functions for 15 methods.
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Figure 5. Histograms of convergence of experimental functions for 15 methods.

Only these methods showed the best convergence
and calculation accuracy for all functions. Other
methods have partially shown excellent results for some
functions, while for other functions not at all.

It should be noted that it is advisable to use these
methods on more complex functions, which in addition
to the global minimum contain several local minima,
which may be of interest in solving applied engineering
problems. The use of the developed tool will speed up
the analysis of engineering functions, and in general
will increase the stability of the results.

Conclusions

In the course of this work the main optimization
methods used in modern engineering problems and
methods of learning neural networks were considered.
In the course of the research the analysis of properties
and features of the considered methods was carried out,
and also conditions and the substantiation of their most
optimum application in various practical tasks from the
point of view of their convergence and accuracy were
formulated.

The analysis data are accompanied by practical
results, which confirm the formulated recommendations
for the use of the considered methods of classical and
stochastic gradient descent, pulse, adaptive, and quasi-
Newtonian optimization algorithms in engineering
problems.

Areas of further research. The considered
multidimensional optimization methods can be used in
the future for training neural networks.
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